
Ballistic Pendulum Lab  
The Conservation of Angular Momentum is probably the least familiar of the three great conservation 
laws for most people.  In this lab a metal ball is fired horizontally into a swinging arm or “Ballistic 
Pendulum” and captured by a spring-loaded clasp near its lower end.  The ball brings in energy of 
course.  However, the collision is inelastic and an unknown portion of that energy is lost as heat.  The 
ball also brings in linear momentum.  Once again an unknown enters the problem in that the axle at the 
top end exerts a force on the pendulum and injects an unknown amount of momentum into the system.  
The trick here is that we can track the third conserved quantity – “angular momentum” – because, 
although the axle does exert a force – that force has no lever arm and thus no torque.  The fundamental 
equation of motion: 
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tells us that torque “is” the rate of transfer of angular momentum, and that without torque the angular 
momentum must remain constant.  This is what we use. 
 

 
The Lab 
 
This lab is conducted with the goal of finding the velocity of the incoming projectile (the steel ball).  
You will derive a (pretty involved) relationship from our conservation laws which tells you the 
incoming speed of the projectile from the maximum angle that the recoiling pendulum finally swings 
up to. When you measure this angle you stick it in this universal relationship and then … voilà !– you 
get the velocity (even for a high speed projectile like a bullet, which is how this was really used for a 
long time before the advent of highspeed electronics [think U.S. Civil War etc.]). 
Our attention focuses on three individual “moments-in-time” in the full process: 
 
Moment #1)  Infinitesimally “before the collision”.  The incoming angular momentum is given by:    
 

")* = +,- 
 
Moment #2)  Infinitesimally “after the collision”.  The outgoing angular momentum is given by: 
 

"./0 = 12./0 
 

Moment #3)  At the moment of maximum angular swing.  At this final moment we have: 
 

34./0 = '546)*78 
 
So here’s the thought process.  At moment #1 the ball (a particle) is bringing in angular momentum 
and we have expressed it in the form appropriate for a particle.  Directly after the collision (about a 
thousandth of a second later) … the projectile has “joined” the pendulum in an inelastic collision.  
Nothing has moved almost at all – but a lot has changed!   



At Moment #2 the projectile-pendulum “System” is now swinging together “as one” with an angular 
velocity 2./0 and this “System” has exactly the Angular-Momentum that the projectile initially was 
carrying.  Nothing else but Angular Momentum is “continuous across the duration” of the collision.  
But now from Moment #2 until Moment #3 … we have no more collisions and we can follow the 
Mechanical Energy which is conserved as gravity exerts itself on the system: “doing work, 
transferring momentum and exerting torque”.  At Moment #2 all energy is Kinetic Energy which at 
Moment #3 has all, finally, become gravitational Potential Energy.  The basic conservation of energy 
statement may be written as 
 '

34./0 = '546)*78 
which may be further written as 
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And since "./0 = ")*  by the assumption of conservation of angular momentum,  we may now write 
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And finally, this becomes: 
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Convince yourself that the Center of Mass has risen by ∆ℎ@A = 'D@A(1 − cos(JK7L))  . 
 

The moment of Inertia “I” can be found from a second simple measurement … that of the period of 
swing  “ T ”  of the “System” now used as a simple pendulum.  This a result we will deduce in our next 
unit of study. 
The necessary relationship given here is: 

 
 
We will need the numbers:  { m, M, <, T, r, D@A , JK7L} .  From {T,M, <, D@A}  we can get I.   
Then from JK7L and D@A   we can get ℎ@A and from this we can work our way back to the incoming 
velocity ,  .    
 
Your task in this lab is then to determine the following : 
 

1)!  Produce a single algebraic expression giving ,  as a function of the other quantities.  A really 
cute trick happens if you use the trig identity:  1 – cos(J)  = 2NOP9QJ 2R S 

2)! Insert the measured data and produce the required velocity ,. 
 

3)! Check this velocity against the velocity deduced from the range of the same projectile fired off 
the table top (just as we did in the beginning of the semester) and find the % difference.  Are 
we within expected uncertainty ?  (i.e. did it work ?) 
 



4)! Deduce the percentage of the Kinetic Energy lost in the inelastic collision. 
 

5)! Deduce the percentage of the Linear Momentum lost in the inelastic collision.  This momentum 
transfer occurred at the axle.  You need to recall that the incoming linear momentum is simply 
given by 5)* = +, , while the outgoing linear momentum at Moment #2 is given by 
 

5./0 = ;T@A' = ;2./0D@A 
 

If axles aren’t strong enough and can’t deliver the momentum required of them … they rip free 
in such circumstances!  That’s bad engineering!  If the incoming projectile was moving left to 
right … did the axle push on the projectile to the left or to the right? 

 
 
The Data: 
 
Next, we present actual data taken in that lab period. 
 
Projectile Mass     m  = .0667 kg 
 
“System” Mass     M  = .3092 kg     This is the swinging arm plus the projectile. 
 
Lever arm             r    =  .30 meter 
 
Center of Mass     Rcm = .285 meter     (this is the distance from the axle out to the CM) 
 
Period of Swing    T   = 1.126 second 
 
Max. Angle          JK7L   =  29o 
 
Height of cannon off the floor for the test shots:    h = 0.895 meter 
 
 
 
Test Trial Range 
 off table top (meters)  
 
1 1.567  
 

2 1.570  
 

3 1.604  
 

4 1.610  
 
 
 
 




